import leds
import math
import time
[docs]def col_cor(colors, brightness=1, gamma=1):
"""
Gamma and brightness correction for the RGB channels
"""
return [
[int(255 * brightness * math.pow((y / 255.0), gamma)) for y in x]
for x in colors
]
[docs]def halo(colors):
"""
Set the four bottom/side LEDs to colors corresponding to the color spectrum
on the outermost of the top 11 LEDs.
"""
used_leds = len(colors)
# add additional RGB-Color-lists to the colors-list to fill up the top LEDs with emptiness
colors += [[0, 0, 0]] * (11 - used_leds)
# add four additional colors. the last one, the first one twice, the last one.
colors += [colors[used_leds - 1]] + [colors[0]] * 2 + [colors[used_leds - 1]]
return colors
[docs]def kitt(
cycles=100,
delay=80,
power=10,
minimum=0.3,
rgb=[255, 0, 0],
spectrum=[],
halo=False,
):
"""
LED Animation. Knight rider-Style.
:param int cycles: Amount of cycles for the animation
:param int delay: Time in microseconds until the animation moves on (Inverse of Framerate).
:param int power: Shape of your brightness curve. Bigger values make a
steeper curve, smaller values make the curve wider.
:param float minimum: Minimal brightness.
:param [r,g,b] rgb: If you don't enter a spectrum this is the color used.
:param list spectrum: A color spectrum consisting of up to 11 RGB-Value-Lists
(e.g. ``[[255,255,255], [0,0,0], [255,255,255], ...]`` ). If you use
less, the animation will be less wide.
:param func halo: Halo function. See :py:func:`ledfx.halo`.
"""
# create a basic table of values for a smooth increment of the LED
# brightness (if you don't understand this, don't worry, i don't either.
# just paste it into the python shell and see the output). Basically
# creates a negative cosinus curve.
kitt_table = [((-math.cos(math.pi * (x / 10.0))) + 1) / 2.0 for x in range(21)]
# adjust the values to start with a minimum brightness and the width of the
# curve to the given power.
kitt_table = [math.pow(x, power) * (1 - minimum) + minimum for x in kitt_table]
# for the amount of specified cycles
for i in range(cycles):
# repeat every 20 steps
j = i % 20
# and go backwards after 10 steps
if j > 10:
j = 20 - j
if spectrum == []:
used_leds = 11
# set the color values to the LEDs by multiplying the given color
# value with the corresponding brightness value in the kitt table
output = [
[int(x * y) for y in rgb] for x in kitt_table[j : (j + used_leds)]
]
else:
used_leds = len(spectrum)
# multiply the color values in the corresponding spectrum tuple
# with the brightness value in the kitt table
output = [
[int(y * kitt_table[j + x]) for y in spectrum[x]]
for x in range(used_leds)
]
if halo:
halo(output)
leds.set_all(output)
time.sleep_ms(delay)
leds.clear()